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Residual Stresses in Microcomposites and 
Macrocom posites” 

H. D. WAGNER 

Department of Materials & Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel 

(Receiced February 26.1994; infinal form June 11 ,1994)  

Existingmodels for built-in residual stresses in composite materials are reviewed and discussed. In particular, 
the thermal longitudinal stress present in the fiber prior to a single-fiber fragmentation experiment is studied 
using various model composite data. It is found that this stress is typically compressive in nature and that, 
quantitatively, it depends on the fiber content, the degree of undercooling, and the thermoelasticconstants of 
the fiber and the matrix. In the case of single-fiber composites (or microcomposites), the thermal longitudinal 
stress present in the fiber is high enough to either induce fiber sinewave buckling(such as in E-glass/epoxy),or 
extensive fiber fragmentation (such as in graphite HM/polypropylene) that may then be used to measure the 
dependence of compressive fiber strength upon length. This has to be accounted for in quantitative models 
that calculate interfacial adhesion parameters using single-fiber tests, such as the fragmentation test or the 
microbond test. Implications for high fiber content composites (or macrocomposites) are discussed. 

KEY WORDS: Residual thermal stresses; microcomposites; single fiber composites: fiber fragmentation; 
compressive strength of single fibers; concentric cylinders models; 

1. INTRODUCTION 

The single-fiber composite (or fragmentation) test’ was inven!ed in the mid-seventies 
and developed to estimate the degree of adhesion between a rigid fiber and a more 
ductile polymer matrix. The calculation of the interfacial shear strength (T), which 
reflects the extent to which the fiber and matrix constituents adhere, involves the use of 
the Kelly-Tyson equation6 This equation contains, as one of the key parameters, the 
tensile stress in a fiber fragment of very small length (the length obtained when the 
fragmentation phenomenon reaches its saturation state, of the order of a few hundreds 
of microns in typical polymer-based composites). Usually, all pre-existing stresses in 
the fiber (such as residual, thermal or fabrication stresses) are considered to be very 
small, and are not included in the calculations. Based on the results of recent 

it has been observed that compressive fiber fragmentation may be 
induced during sample preparation. This implies that very large compressive stresses 
(several GPa)  are present in the fiber prior to the fragmentation test. This “sponta- 
neous” fiber breaking is attributed to residual thermal stresses, which are also 

*One of A Collection of papers honoring Lawrence T. Drzal, the recipient in February 1994 of The 
Adhesion Society Award for Excellence in Adhesion Science, Sponsored by 3M. 
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132 H.D. WAGNER 

responsible for the fiber buckling sometimes observed in unidirectional composites 
under compressive stress parallel to the fiber direction. 

The objective of the present work is to review various models proposed in the 
literature for the calculation of residual stresses present in single-fiber composites due 
to cooling from a relatively high manufacturing temperature. The type of single-fiber 
composite, in which fiber fragmentation might arise in a fiber before a fragmentation 
test is performed, is discussed. The effect of fiber content is also addressed. 

2. SURVEY OF MODELS 

A look at the literature reveals the existence of various theoretical expressions for the 
principal (radial, circumferential, and longitudinal) stresses in the (cylindrical) fibers 
and the matrix, and at  the interface between these, due to the thermal shrinkage that 
results from sample preparation. As will be seen, some models account for possible 
anisotropy of the fiber, but most do not. All schemes assume a perfect, infinitely-thin 
interface, except for the model of Nairn," where an interphase region is included. 
Broadly speaking, all models can be classified in two groups, namely, (i) the schemes 
based on one-dimensional modelling, and (ii) the schemes based on the solution of the 
classical "shrink-fit" problem for concentric cylinders. The main expressions obtained 
from both approaches are now reviewed and discussed. 

2.1. One-dimenrionel Models 

Several authors consider a unidirectional composite in a state of plane stress, corre- 
sponding to thin laminates, under a thermal strain. No mechanical stresses are applied. 
Both the fibers and the matrix are assumed to be isotropic. The only residual stress 
components present in the fibers and the matrix are assumed to be the longitudinal 
components c! and tf, respectively, given by 

where u and E are the (isotropic) coefficient of thermal expansion and Young's 
modulus, respectively, 4 is the content by volume, with the subscripts m orffor  the 
matrix or the fiber, and where Tis the test temperature and TreJ the stress-free reference 
temperature. These equations are taken form Tsai and Hahn.' ' Possible orthotropic 
symmetry of the fibers and the matrix can be included'* in these formulae by replacing 
u, and u, by'%,, and a,,, and E, and Em by E,, and Em,, respectively. Identical 
equations are presented by Zong and Marcus," and related expressions are proposed 
by Peters and A n d e r ~ e n ' ~  for cross-ply laminates. Note that another assumption 
included in the above model (as well as in most other models) is that the physical 
parameters (u  and E) in Eqs. (1-2) are independent of temperature in the range between 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



RESIDUAL STRESSES IN COMPOSITES 133 

T and Tre,, which is not always the case. As shown by several a ~ t h o r s , ' ~ ' ' ~  the 
dependence of the elastic constants on temperature may be accounted for by replacing 
the temperaturedifference in theaboveequations bydT and integrating between Tand 
T,e,, with the temperature-dependent elastic constants replacing those in Eq. ( I ) .  Filiou 
er a1.," further subdivide the temperature range into two sub-ranges for the purpose of 
integration, namely, between T and T, and then between T,  and T,. 

Another approximate one-dimensional model can be constructed as follows, specifi- 
cally for the single fiber composite test. 

S t e p  1: The fiber and the matrix components are viewed as if they were not in contact 
with each other. At the reference temperature (defined as above) we have 

and 

E(,1) = 0 

where W is the preload and A ,  is the cross-sectional area of the fiber. The only strain 
present in the fiber at the reference temperature is due to the pre-loading weights that 
are sometimes fastened at both ends of the fiber prior to embeddment into the matrix 
(this is done to keep the fiber straight during preparation and polymerization of the 
matrix). 

S t e p  2: The fiber and the matrix are cooled down (separately) to room temperature, 
producing the following strains: 

and 

E:) = a,( T - T,,,) (4) 

Srep  3: The fiber and matrix are now put back into contact to form a composite. 
Assuming perfect bonding, the final strains at the fiber-matrix interface should be 
perfectly matching, thus 

( 5 )  &:"I = E:" + SE,  

where SE, and SE, are the changes in strain of the fiber and the matrix, respectively, 
associated with reestablishing perfect bonding. These changes are of opposite signs, 
and we assume that 1 6 ~ ~ 1  z IB&,,,I. 

Our objective is to determine the residual strains in the fiber and the matrix at step 3. 
Recalling that there is no mechanical force applied to the composite, apart from a fiber 
pre-load, W ,  the following force balance pertains: 
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134 H.D. WAGNER 

Equation (6) shows 

which may be combined with Eqs. (3-4), and (6) to yield 

By insertion of Eq. (9) into Eq. (7) we obtain 

Finally, since a;esid =&?'El ,  we have the following result for the residual fiber stress: 

Later in this work, Eq. (1 1) will be used in the limiting case where W = 0 and dr + O  (it 
will be seen that Eq. (1 1) is valid only at very small fiber content values, well below the 
value defined from the singularity in the denominator). The residual stress in the matrix 
is obtained from Eq. (7), rewritten as follows in terms of stress rather than strain: 

These results (Eqs. (1) and (1 1)) will be further examined in the Discussion section. 
In the one-dimensional models presented so far, the only stress components con- 

sidered were the longitudinal ones. Transverse residual stresses can also be calculated 
by means of a more complete, three-dimensional analysis. This is made possible by 
means of several versions of the "shrink-fit" composite cylinder model, which are now 
reviewed. 

2.2. Three-dimensional Models 

Refering to Figure 1, two concentric cylinders are assembled top.ether at a relatively 
high temperature, T,,,, and then cooled down to temperature 7-. The problem consists 
in determining the stresses that develop in the cylinders as the temperature decreases 
progressively, down to temperature T, given that they possess different elastic con- 
stants and coefficients of thermal expansion. Perfect interfacial contact is assumed. 
Various authors have addressed this problem, among them Poritsky," Brugger," 
Haslett and McGarry,2" Nairn," and more recently Jayaraman and Reifsnider," 
Lawrence er ~ l . , ~ ~  and Di Landro and P e g ~ r a r o . ~ ~  A detailed outline of the solution is 
presented here, following the methods of Haslett and McGarry'" and, mostly, Nairn." 
The work presented here is slightly more general than the previous results. as we 
consider both cylinders to be transversely isotropic (Nairn studied the case where only 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



RESIDUAL STRESSES IN COMPOSITES 135 

FIGURE 1 Cross scction of the “shrink-fit” composite cylinder model. 

the central cylinder-thus, the fiber-is transversely isotropic). In the present case, this 
type of anisotropy is a specialized case of ~r thotropy,’~ namely, the (r, 0) plane is a 
plane of isotropy (alternatively, one could state that the thermoelastic properties in the 
r and 0 directions are equivalent). 

i )  One cylinder: First, consider a single hollow cylinder with free ends, subjected to the 
following conditions: (i) the axial strain is constant, so that plane sections perpendicular 
to the axis remain planar during straining; (ii) Every cross-section perpendicular to the 
axis undergoes radial strains only (for example, internal and/or external pressuriz- 
ation). This is a classical elasticity problem, and for a linear elastic, isotropic cylinder 
under internal pressure Pi  and external pressure Po, the textbook s ~ l u t i o n ’ ~ - ~ ~  is 

rJ rr = - p .  8 2  - Po--- (!) - 1  l - ( $  

uzz = 5 (a constant) 

where or,, oO8, and uzr are the radial, hoop and longitudinal stresses at a distance r from 
the symmetry axis, and a and b are the internal and external radii of the cylinder, 
respectively. 

ii) Two cylinders: The next step is to consider two concentric cylinders, where the 
internal cylinder (the fiber) is solid rather than hollow, and where both cylinders are 
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136 H.D. WAGNER 

transversely isotropic, rather than isotropic. Following Lekhnit~kii,'~ and including 
thermal strain effects, the strain-stress relationship for transversely isotropic materials 
has the form (in cylindrical coordinates): 

where v and E are Poisson's ratio and Young's modulus, respectively, and AT = 
T -  Tref (Eq. (16) is also called the Duhamel-Neumann relationships). As necessary, 
there are 4 independent elastic constants and two thermal expansion coefficients. 
Transverse isotropy is a convenient case since it can be shown that the form of the 
stresses in the cylinders is the same as for the isotropic case," whereas this is not true 
for other specialized cases of orthotropy. 

For the fiber (the internal cylinder) the internal pressure and internal radius are zero. 
Eqs. (1 3)-( 15) become: 

o{, = uB/B = AJ (17) 

oiz = cf (18) 

where Af and Cf are constants. On the other hand, the pressure on the outer surface of 
the external cylinder (the matrix) is zero (in our original thermal stress problem) and 
Eqs. 13- 15 become: 

orz= C" (21) 

where A", B" and C" are constants, and the notations for the internal and external radii 
are now R ,  and R,, instead of a and b. Thus, the problem is reduced to the 
determination of the 5 constants A', Cf, A"', B"' and C". The radial stress boundary 
conditions are associated with continuity of tractions at interfaces: 

A force balance in the longitudinal direction yields 
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RESIDUAL STRESSES IN COMPOSITES I37 

where 4f = ( R , / R 2 ) ' ,  and 4" = 1 - bf. Using Eqs. (17)-(21), the conditions (22)-(24) 
yield 

(27) 
c'= - C"- 9 m  

41 

These expressions reduce the number of unknowns to only two, namely, A" and C". 
These latter can be determined by applying the strain-stress relations (16) with the 
interfacial no-slip conditions: 

i$=cy' at r = R ,  (28) 

and u: = u: at r = R ,  (where the u denote the displacements), which, since ur = rceo, is 
equivalent to 

=&re at r = R, (29) 

The no-slip conditions (28) and (29), combined with the thermoelastic relations (16), 
yield two simultaneous equations with two unknowns: 

A" K l  + C"K2 + Ml(T-  T r e f ) = O  

A " K , + C " K , +  M 2 ( T - T r e , ) = 0  (30) 

where: 

K , =  -[T,+- 1 - V i r f $ "  1 - v r r  +--I 1 + v ;  1 (33) 
E: E: 9f 

and 

M, =(a{ - a:) (35) 

M ,  =(a{ - z;) (36) 

If the matrix is isotropic, the K;s reduce to the corresponding matrix elements 
previously given by Nairn (see Table 3 in Reference 10). 
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138 H.D. WAGNER 

Solving Eq. (30) yields: 

By inserting these results into Eqs. (25)-(27), the residual thermal stresses in both the 
fiber and the matrix may be determined from Eqs. (17)-(21). Haslett and McGarry2' 
develoded a similar model, but assumed from the onset that the fiber content was 
negligible compared with the matrix content. Moreover, they performed their calcula- 
tions specifically for E-glass/epoxy only. Changing their notations and reworking their 
equations in a different way, their result may be presented in the following more general 
manner: 

and 

for the longitudinal and radial stresses in the fiber, respectively, and where 

K = 1 + (g)( -) 1 + v, 
1 + v j  

3. DISCUSSION 

We now compare the results obtained by means of the various models surveyed above, 
using data for E-glass/epoxy and HM-graphite/polypropylene. Those materials are 
taken as representative of, respectively, a conventional thermoset-based composite 
with an isotropic fiber, and a thermoplastic-based composite with a highly anisotropic 
fiber. Data for these materials are presented in Table I. Of particular importance is the 
comparison between the residual stresses present in composites with low fiber volume 
fraction (microcomposites) and those present in composites with high fiber volume 
fraction (macrocomposites), which will be amply illustrated. 

The residual, thermal stress in the fiber induced by cooling an E-glass fiber/epoxy 
single-fiber composite is shown in Figure 2(a), as a function of the degree of undercool- 
ing relative to the stress-free temperature level, using the four models reviewed in 
Section 2. We focus on microcomposite specimens that have dimensions representative 
of those used in fragmentation tests. In such an E-glass/epoxy microcomposite, the 
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RESIDUAL STRESSES IN COMPOSITES 139 

TABLE I 
Thennomechanical data for E-glass/epoxy and HM-graphite/poly- 

propylene (i) E-glass/epoxy: 

E-glass Epoxy 

Young's modulus E,[GPa] 72.5 4.0 
Young's modulus E,[GPa] 12.5 4.0 
Poisson's ratio v;, 0.22 0.4 
Poisson's ratio v& 0.22 0.4 
Thermal expansion coefficient 5.04 6.30 

Thermal expansion coefficient 5.04 6.30 

Fiber Radius [jlm] 8.5 

a,[10-6 c-I] 
z,[10-6 c-I] 

(ii)  HM-graphite/polypropylene: 

HM-graphite Polypropylene 

Young's modulus EJGPa] 750.0 4.0 
Young's modulus E,[GPa] 15.0 4.0 
Poisson's ratio v,, 0.22 0.3 
Poisson's ratio v,,, 0.25 0.3 
Thermal expansion coefficient - 1.50 1 10.0 

Thermal expansion coefficient 10.0 110.0 
a:[ 10-6'c- 1 3  

z,[10-6C-'] 
Fiber Radius bm] 5.0 

typical fiber content by volume is 0.0003 and corresponds to concentric cylinders of 17 
and 980pm diameters, respectively, for the fiber and the matrix. Figure 2(b) shows the 
same plot for a graphite HM/polypropylene microcomposite. Again, we assumed a 
fiber volume fraction of 0.0003, which, in this case, corresponds to concentric cylinders 
of 10 and 580pm diameters, respectively, for the fiber and the matrix. As seen, for both 
types, all models are in close agreement with each other. Note the order of magnitude 
difference between the fiber compressive stresses induced in the E-glass/epoxy (up to - 0.5 GPa) and graphite/polypropylene (up to 12 GPa!) composites. We elaborate 
on this issue later in this Section. 

In  a macrocomposite (fiber content of 0 3 ,  the differences between the two types of 
composite are much less pronounced, as seen in Figure 3(a) and 3(b), and the 
theoretical models are still in good agreement with each other. Figure 3 only shows the 
models of Hahn-Tsai (Eq. ( l ) ,  and Nairn (Eq. (18)), as these are the most reliable (as we 
will see). Also, the longitudinal compressive stress induced in the fiber, for both types of 
macrocomposites, is now of the order of a few tens of MPa, significantly lower than in 
the microcomposites. 

The dependence on fiber content is illustrated more clearly in Figure 4 for (E- 
Glass/epoxy) and 5 (for graphite/polypropylene). These reveal that the simple model 
proposed here (Eq. ( 1  I)) ,  as well as the model of Haslett and MacGarry (Eq. (39)), are 
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140 H.D. WAGNER 

-200 -150 -100 -50 0 

Fiber Volume 
Fraction = O.OOO3 

+Eq. 1 
+Eq. 11 
+Eq. 18 

T-Tref [Deg Cl 

0 

-2 

-4 

-6 

-a 

-10 

FIGURE 2 Microcomposites: Comparison of models for the longitudinal compressive stress induced in: 
(a) an E-glass fiber, by cooling a surrounding matrix of epoxy [material data are given in Table I, the fiber 
content by volume is 0.0003 and corresponds to concentric cylinders of 17 and 980p-n diameters, 
respectively, for the fiber and the matrix]; 

valid only at very low fiber content, thus for microcomposites only. The only models 
that seem valid (and are definitely consistent with each other) in  the full range of fiber 
contents are those of Hahn and Tsai (Eq. (1)) and Nairn (Eq. (18)). For E-glass/epoxy 
(Figure 4), the value of AT was taken as - 6OCC, starting from a curing temperature of 
about 80°C down to room temperature, whereas for graphite/polypropylene(Figure 5),  
AT was set at - 140"C, starting from an isothermal crystallization temperature of 
about 140°C down to 0°C (quenching in ice). As clearly seen, in both cases the 
longitudinal compressive stress in the fiber is large (a full calculation of all stresses in the 
fiber and the matrix using Nairn's model shows that it is in fact the largest of all 
stresses): 

1. In E-glass, Figure 4, the compressive stress in a microcomposite with 0.0001 fiber 
content is of the order of - 250 MPa, which is about 7 percent of the compressive 
strength of (soda-lime) glass,29 a level which is not negligible and might be 
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RESIDUAL STRESSES IN COMPOSITES 141 

b e 

T-Tnf [m C] 

FIGURE 2 (b) A pitch-based, high-modulus graphi te fiber, by cooling a surrounding matrix of polypropy- 
lene [material data are given in Table I, the fiber content by volume is 0.0003 and corresponds to concentric 
cylinders of 10 and 580pm diameters, respectively, for the fiber and the matrix]. 

responsible for sinewave buckling of the fiber that is sometimes observed in 
E-glass/epox y. 

2. In graphite HM, Figure 5,  the compressivestress in a microcomposite with O.OOO1 
fiber content is of the order of - 12GPa (in more physical terms, this represents a 
pressure in the fiber of more than 100,OOO atmospheres!). For comparison, the 
compressive strength of high-modulus, pitch-based fibers varies between 0.5 and 
1 GPa, depending on the fiber type and measurement m e t h ~ d . ~ ~ . ~ '  This means 
that the fiber will be fractured in many sites along its length due to cooling stresses, 
as is indeed observed (Figure 6). This provides an experimental tool to apply large 
compressive stresses in fibers and measure the dependence of compressive fiber 
strength upon fiber length.' 

Important consequences of these observations are as follows: 

0 The single fiber fragmentation test must account for residual stresses in the fiber if 
an accurate calculation of the interfacial stress transfer (via the much used 
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E-GluurlEpoxy 

-200 -150 -1 00 -50 0 

Flber Volume 
Fractlon = 0.5 

0 

4.02 

-0.04 

-0.06 

-0.08 

-0.1 

-0.1 2 

T-Tref [Drag C] 

FIGURE 3 Macrocomposites: Comparison of models for the longitudinal compressive stress induced in: (a) 
an E-glass fiber, by cooling a surrounding matrix of epoxy [material data are given in Table I ,  the fiber 
content by volume is 0.5 and corresponds to concentric cylinders of 17 and 24pm diameters, respectively, for 
the fiber and the matrix]. 

interfacial shear strength) is to be performed. This calculation is normally done by 
means of a Kelly-Tyson approach, which includes the strength of a short fiber 
fragment as one of its parameters. This strength is normally not directly accessible 
and thus, (i) either one extrapolates from the strength of larger fibers, a procedure 
which is extremely time-consuming and somewhat inaccurate, or (ii) one performs 
a continuously-monitored test by which the strength of the fiber fragments is 
measured as a function of decreasing fiber length, a procedure which is very rapid, 
and provides in situ data (unlike the previous one). It is in this latter case that one 
has to include thermal stress effects in the fiber. 

0 The stress state in a microbond test is largely modified by the presence of 
inhomogeneous cooling stresses in the polymeric droplet, and in the embedded 
portion of the fiber. These stresses must be accounted for in the calculation of the 
interfacial shear strength. 
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-200 -1 50 -100 60 0 

T 

Fiber VOluIm 
Fraction = 0.5 

0 

0.02 

4.04 

4.06 

4.m 

0.1 

0.12 

T-TW Iaa cl 

FIGURE 3 (b) A pitch-based, high-modulusgraphitefiber, by coolingasurroundingmatrix ofpolypropy- 
lene [material data are given in Table I, the fiber content by volume is 0.5 and corresponds to concentric 
cylinders of 10 and 14pm diameters, respectively. for the fiber and the matrix]. 

A further point, which we now address, is the role of the longitudinal Young's 
modulus of the fiber. The strongest effects are usually observed with anisotropic, high 
modulus fibers and, therefore, we focus on pitch-based graphite. It is readily demon- 
strated that the effect of Young's modulus on the residual compressive stress in the fiber 
is significant only in microcomposites (Figure 7(a)), and may be neglected in macro- 
composites(Figure 7(b)). Indeed, in the latter case, too little matrix is involved to induce 
any significant compression in the fiber, whatever its Young's modulus. 

A final word concerning the effect of matrix anisotropy. Only the extended version of 
Nairn's model, as presented here, is able to distinguish such an effect because it includes 
the full set of elastic constants of the matrix. In this case, using graphite 
HM/polypropylene, the effect is found to be very small if the ratio of matrix Young's 
moduli, E:/E,", is varied by changing E r ,  and is found to be moderate if the ratio is 
varied by changing Em. 
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o.ooo1 0.001 0.01 0.1 1 

+Eq.l 
+Eq. 11 
+ Eq. 39 
+Eq. 18 

0 

-0.05 

-0.1 

-0.15 

-0.2 

-0.25 

-0.3 

-0.35 

-0.4 

4.45 

-0.5 

h e r  Volume Fraction 

FIGURE 4 Longitudinal compressive cooling stress induced in an E-glass fiber embedded in a matrix of 
epoxy, as a function of fiber content. Undercooling AT is - 60°C. The regions corresponding to microcom- 
posites and macrocomposites are arbitrarily set at 0.1 percent and below, and 10 percent and above, 
respectively, the data in between corresponding to a transition region. 

4. CONCLUSIONS 

The major models for residual thermal stresses in composite materials were reviewed 
and discussed. In particular, the models of Hahn and Tsai,' I '' and of Nairn,' were 
found to be in close agreement and are probably the most reliable. However, only 
Nairn's model is able to account for all stresses in both phases. The thermal longitudi- 
nal stress present in the fiber prior to a single-fiber fragmentation experiment was 
studied using various model composite data. It is found that, for composites made of 
brittle fibers within a ductile matrix, this stress is typically compressive in nature, and 
that, quantitatively, it depends on the fiber content, the degree of undercooling, and the 
thermoelastic constants of the fiber and the matrix. In the case of single-fiber compos- 
ites (or microcomposites), the thermal longitudinal stress present in the fiber is high 
enough to induce either fiber sinewave buckling (such as in E-glass,/epoxy), or extensive 
fiber fragmentation (such as in graphite HM/polypropylene). In the latter case, the 
compressive stress in the fiber is of the order of 100,OOO atmospheres, which leads to the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



RESIDUAL STRESSES IN COMPOSITES I45 

Graphlte HWPolypropylene 

o.Ooo1 0.001 0.01 0.1 1 
1 1 

-0 -4 .11  
-A- Eq. 39 

I 
MACRO 

I- 
I 
I 
I 
I 

MICRO I I 

- 1  

0 

-2 

-4 

-6 

-8 

-10 

-1 2 

Rber Volume Fractlon 
FIGURE 5 Longitudinal cornpnssivecoolingstress induced in a graphite HM fiber embedded in a matrix 
of polypropylene, as a function of fiber content. Undercooling AT is - 140°C. The regions corresponding to 
microcomposites and macrocomposites are arbitrarily set at 0.1 percent and below, and 10 percent and 
above, respectively, the data in between corresponding to a transition repon. 

possibility of using, in some cases, this technique (cooling of a matrix around a thin 
second phase) to create very large compressive stresses in the second phase. This can be 
used to measure the dependence of compressive fiber strength upon fiber The 
present work clearly shows that it is important to account for residual stresses in the 
fiber in order to extract valid stress transfer data from single-fiber composite (or 
fragmentation) tests, which are widely used to measure interfacial properties in 
composites. This is normally done by means of a Kelly-Tyson approach, which 
includes the strength of a short fiber fragment as one of its parameters. If thisstrength is 
to be measured by continuous monitoring (by which the strength of the fiber fragments 
is measured as a function of decreasing fiber length), one has to include thermal stress 
effects in the fiber. In a microbond test, the stress state in the fiber is largely modified by 
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FIGURE 6 Optical microscope viewing of spontaneous single fiber compressive fragmentation in HM- 
graphite/polypropylene, resulting from the build-up of residual thermal stresses from sample quenching. The 
fiber diameter is 1Opm. The glow around the fiber edges is due to the simultaneous use of transmitted and 
reflected light, for better viewing of the fiber breaks. 
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FIGURE 7 Effect of the fiber longitudinal Young’s modulus on the longitudinal compressivecooling stress 
in the fiber. The three fiber moduli employed correspond to low, medium, and high modulus graphite. The 
matrix is polypropylene. (a) Results for a typical microcomposite (fiber content of O.OOO3); 

the presence of inhomogeneous cooling stresses in the polymeric droplet, and in the 
embedded portion of the fiber, and thus, again, one has to include thermal stress effects. 
Implications of the results for single-fiber composites relative to high fiber content 
composites were discussed. Finally, one must be cautious in applying the above 
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FIGURE 7 (b) Results for a typical macrocomposite (fiber content of 0.5). 

theoretical models since the effect of temperature and the possible effects of cooling 
rate, on the various thermoelastic constants, have not been accounted for. 
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